Skip to content

Vector Storage Patterns ​

Efficient patterns and architectures for storing and managing vector data at scale

πŸ—„οΈ Vector Storage Fundamentals ​

Definition: Strategies and patterns for efficiently storing, organizing, and accessing high-dimensional vector data

Simple Analogy: Like designing a well-organized warehouse where similar items are stored together, with efficient systems for finding and retrieving what you need quickly.

Core Storage Challenges ​

High Dimensionality ​

  • Challenge: Vectors often have 256-4096 dimensions
  • Impact: Traditional indexing strategies become inefficient
  • Solution: Specialized indexing and compression techniques

Volume Scale ​

  • Challenge: Millions to billions of vectors
  • Impact: Memory and storage requirements grow rapidly
  • Solution: Hierarchical storage and partitioning strategies

Access Patterns ​

  • Challenge: Need for both batch processing and real-time queries
  • Impact: Different storage optimizations needed
  • Solution: Hybrid storage architectures

Storage Architecture Patterns ​

1. Flat Storage Pattern ​

Simple approach where all vectors are stored in a single, flat structure.

python
import numpy as np
import pickle
import h5py

class FlatVectorStorage:
    def __init__(self, dimension):
        self.dimension = dimension
        self.vectors = []
        self.metadata = []
    
    def add_vector(self, vector, metadata=None):
        """Add a single vector with optional metadata"""
        if len(vector) != self.dimension:
            raise ValueError(f"Vector dimension {len(vector)} doesn't match expected {self.dimension}")
        
        self.vectors.append(vector)
        self.metadata.append(metadata or {})
        return len(self.vectors) - 1  # Return index
    
    def add_batch(self, vectors, metadata_list=None):
        """Add multiple vectors at once"""
        if metadata_list is None:
            metadata_list = [{}] * len(vectors)
        
        for vector, metadata in zip(vectors, metadata_list):
            self.add_vector(vector, metadata)
    
    def get_vector(self, index):
        """Retrieve vector by index"""
        if 0 <= index < len(self.vectors):
            return self.vectors[index], self.metadata[index]
        return None, None
    
    def save_to_disk(self, filepath):
        """Save vectors to disk using HDF5"""
        with h5py.File(filepath, 'w') as f:
            # Store vectors as dataset
            vectors_array = np.array(self.vectors)
            f.create_dataset('vectors', data=vectors_array)
            f.create_dataset('dimension', data=self.dimension)
            
            # Store metadata separately (pickle for complex objects)
            metadata_bytes = pickle.dumps(self.metadata)
            f.create_dataset('metadata', data=np.void(metadata_bytes))
    
    def load_from_disk(self, filepath):
        """Load vectors from disk"""
        with h5py.File(filepath, 'r') as f:
            self.vectors = f['vectors'][:]
            self.dimension = f['dimension'][()]
            metadata_bytes = f['metadata'][()].tobytes()
            self.metadata = pickle.loads(metadata_bytes)

# Example usage
storage = FlatVectorStorage(dimension=128)

# Add vectors
vectors = np.random.random((1000, 128))
metadata = [{'id': i, 'category': f'cat_{i%5}'} for i in range(1000)]

storage.add_batch(vectors, metadata)
print(f"Stored {len(storage.vectors)} vectors")

# Save and load
storage.save_to_disk('vectors.h5')
print("Vectors saved to disk")

Pros:

  • Simple to implement and understand
  • Good for small to medium datasets
  • Fast sequential access

Cons:

  • Poor performance for similarity search
  • No indexing for fast retrieval
  • Memory limitations for large datasets

2. Partitioned Storage Pattern ​

Divides vectors into partitions based on various criteria.

python
import hashlib
from collections import defaultdict

class PartitionedVectorStorage:
    def __init__(self, dimension, num_partitions=16):
        self.dimension = dimension
        self.num_partitions = num_partitions
        self.partitions = defaultdict(list)
        self.metadata_partitions = defaultdict(list)
        self.partition_stats = defaultdict(int)
    
    def get_partition_key(self, vector, method='hash'):
        """Determine which partition a vector belongs to"""
        if method == 'hash':
            # Hash-based partitioning
            vector_bytes = vector.tobytes()
            hash_value = int(hashlib.md5(vector_bytes).hexdigest(), 16)
            return hash_value % self.num_partitions
        
        elif method == 'random':
            # Random partitioning
            return np.random.randint(0, self.num_partitions)
        
        elif method == 'clustering':
            # Cluster-based partitioning (simplified)
            # In practice, you'd use K-means or similar
            first_dim_value = vector[0]
            return int((first_dim_value + 1) * self.num_partitions / 2) % self.num_partitions
    
    def add_vector(self, vector, metadata=None, partition_method='hash'):
        """Add vector to appropriate partition"""
        partition_key = self.get_partition_key(vector, partition_method)
        
        self.partitions[partition_key].append(vector)
        self.metadata_partitions[partition_key].append(metadata or {})
        self.partition_stats[partition_key] += 1
        
        return partition_key, len(self.partitions[partition_key]) - 1
    
    def get_partition_info(self):
        """Get statistics about partitions"""
        stats = {}
        for partition_id in range(self.num_partitions):
            count = self.partition_stats[partition_id]
            stats[partition_id] = {
                'count': count,
                'memory_mb': count * self.dimension * 4 / (1024 * 1024)  # Assuming float32
            }
        return stats
    
    def search_partition(self, partition_id, query_vector, k=5):
        """Search within a specific partition"""
        if partition_id not in self.partitions:
            return [], []
        
        partition_vectors = np.array(self.partitions[partition_id])
        if len(partition_vectors) == 0:
            return [], []
        
        # Calculate cosine similarities
        from sklearn.metrics.pairwise import cosine_similarity
        similarities = cosine_similarity([query_vector], partition_vectors)[0]
        
        # Get top-k indices
        top_indices = similarities.argsort()[-k:][::-1]
        
        # Return results with metadata
        results = []
        scores = []
        for idx in top_indices:
            if idx < len(self.metadata_partitions[partition_id]):
                results.append(self.metadata_partitions[partition_id][idx])
                scores.append(similarities[idx])
        
        return results, scores

# Example usage
partitioned_storage = PartitionedVectorStorage(dimension=128, num_partitions=8)

# Add vectors to partitions
vectors = np.random.random((1000, 128))
for i, vector in enumerate(vectors):
    metadata = {'id': i, 'value': f'item_{i}'}
    partition_id, local_idx = partitioned_storage.add_vector(vector, metadata)

# Check partition distribution
stats = partitioned_storage.get_partition_info()
print("Partition Statistics:")
for pid, stat in stats.items():
    print(f"  Partition {pid}: {stat['count']} vectors, {stat['memory_mb']:.2f} MB")

# Search within partitions
query = np.random.random(128)
for partition_id in range(3):  # Search first 3 partitions
    results, scores = partitioned_storage.search_partition(partition_id, query, k=3)
    print(f"Partition {partition_id} top results: {len(results)} items")

3. Hierarchical Storage Pattern ​

Multi-level storage with different performance characteristics.

python
import time
from abc import ABC, abstractmethod

class StorageTier(ABC):
    @abstractmethod
    def store(self, key, data):
        pass
    
    @abstractmethod
    def retrieve(self, key):
        pass
    
    @abstractmethod
    def exists(self, key):
        pass

class MemoryTier(StorageTier):
    """Fast in-memory storage tier"""
    def __init__(self, max_size=1000):
        self.data = {}
        self.access_times = {}
        self.max_size = max_size
    
    def store(self, key, data):
        if len(self.data) >= self.max_size:
            self._evict_lru()
        
        self.data[key] = data
        self.access_times[key] = time.time()
    
    def retrieve(self, key):
        if key in self.data:
            self.access_times[key] = time.time()
            return self.data[key]
        return None
    
    def exists(self, key):
        return key in self.data
    
    def _evict_lru(self):
        """Evict least recently used item"""
        if not self.data:
            return
        
        lru_key = min(self.access_times.keys(), key=lambda k: self.access_times[k])
        del self.data[lru_key]
        del self.access_times[lru_key]

class DiskTier(StorageTier):
    """Slower disk-based storage tier"""
    def __init__(self, base_path='./disk_storage'):
        import os
        self.base_path = base_path
        os.makedirs(base_path, exist_ok=True)
    
    def store(self, key, data):
        filepath = f"{self.base_path}/{key}.npy"
        np.save(filepath, data)
    
    def retrieve(self, key):
        import os
        filepath = f"{self.base_path}/{key}.npy"
        if os.path.exists(filepath):
            return np.load(filepath)
        return None
    
    def exists(self, key):
        import os
        filepath = f"{self.base_path}/{key}.npy"
        return os.path.exists(filepath)

class HierarchicalVectorStorage:
    def __init__(self, memory_size=100):
        self.memory_tier = MemoryTier(max_size=memory_size)
        self.disk_tier = DiskTier()
        self.stats = {
            'memory_hits': 0,
            'disk_hits': 0,
            'misses': 0
        }
    
    def store_vector(self, vector_id, vector, metadata=None):
        """Store vector with automatic tiering"""
        data = {
            'vector': vector,
            'metadata': metadata or {},
            'timestamp': time.time()
        }
        
        # Always store in memory first
        self.memory_tier.store(vector_id, data)
        
        # Also store on disk for persistence
        self.disk_tier.store(vector_id, data)
    
    def retrieve_vector(self, vector_id):
        """Retrieve vector with automatic tier promotion"""
        # Try memory first
        data = self.memory_tier.retrieve(vector_id)
        if data is not None:
            self.stats['memory_hits'] += 1
            return data
        
        # Try disk second
        data = self.disk_tier.retrieve(vector_id)
        if data is not None:
            self.stats['disk_hits'] += 1
            # Promote to memory
            self.memory_tier.store(vector_id, data)
            return data
        
        # Not found
        self.stats['misses'] += 1
        return None
    
    def get_stats(self):
        """Get performance statistics"""
        total_requests = sum(self.stats.values())
        if total_requests == 0:
            return self.stats
        
        return {
            **self.stats,
            'memory_hit_rate': self.stats['memory_hits'] / total_requests,
            'total_hit_rate': (self.stats['memory_hits'] + self.stats['disk_hits']) / total_requests
        }

# Example usage
hierarchical_storage = HierarchicalVectorStorage(memory_size=50)

# Store vectors
for i in range(100):
    vector = np.random.random(128)
    metadata = {'id': i, 'type': 'test'}
    hierarchical_storage.store_vector(f'vec_{i}', vector, metadata)

# Access patterns - some frequently, some rarely
frequently_accessed = ['vec_0', 'vec_1', 'vec_2']
rarely_accessed = ['vec_90', 'vec_91', 'vec_92']

# Simulate access patterns
for _ in range(10):
    for vec_id in frequently_accessed:
        data = hierarchical_storage.retrieve_vector(vec_id)
    
    for vec_id in rarely_accessed:
        data = hierarchical_storage.retrieve_vector(vec_id)

stats = hierarchical_storage.get_stats()
print("Storage Performance Stats:")
for key, value in stats.items():
    if 'rate' in key:
        print(f"  {key}: {value:.2%}")
    else:
        print(f"  {key}: {value}")

Advanced Storage Patterns ​

4. Compressed Storage Pattern ​

Reduces storage requirements through various compression techniques.

python
class CompressedVectorStorage:
    def __init__(self, dimension, compression_method='pca'):
        self.dimension = dimension
        self.compression_method = compression_method
        self.compressed_vectors = []
        self.metadata = []
        self.compression_model = None
    
    def train_compression(self, training_vectors, target_dimension=64):
        """Train compression model on sample data"""
        if self.compression_method == 'pca':
            from sklearn.decomposition import PCA
            self.compression_model = PCA(n_components=target_dimension)
            self.compression_model.fit(training_vectors)
            self.compressed_dimension = target_dimension
            
        elif self.compression_method == 'quantization':
            # Simple scalar quantization
            self.compression_model = {
                'min_values': np.min(training_vectors, axis=0),
                'max_values': np.max(training_vectors, axis=0)
            }
            self.compressed_dimension = self.dimension
        
        print(f"Compression trained: {self.dimension} -> {self.compressed_dimension} dimensions")
        if hasattr(self.compression_model, 'explained_variance_ratio_'):
            total_variance = sum(self.compression_model.explained_variance_ratio_)
            print(f"Explained variance: {total_variance:.2%}")
    
    def compress_vector(self, vector):
        """Compress a single vector"""
        if self.compression_method == 'pca':
            return self.compression_model.transform([vector])[0]
        
        elif self.compression_method == 'quantization':
            # Quantize to 8-bit integers
            min_vals = self.compression_model['min_values']
            max_vals = self.compression_model['max_values']
            
            # Normalize to 0-255 range
            normalized = (vector - min_vals) / (max_vals - min_vals + 1e-8)
            quantized = (normalized * 255).astype(np.uint8)
            return quantized
    
    def decompress_vector(self, compressed_vector):
        """Decompress a vector (approximate reconstruction)"""
        if self.compression_method == 'pca':
            return self.compression_model.inverse_transform([compressed_vector])[0]
        
        elif self.compression_method == 'quantization':
            # Dequantize from 8-bit integers
            min_vals = self.compression_model['min_values']
            max_vals = self.compression_model['max_values']
            
            # Convert back to float range
            normalized = compressed_vector.astype(np.float32) / 255.0
            reconstructed = normalized * (max_vals - min_vals) + min_vals
            return reconstructed
    
    def add_vector(self, vector, metadata=None):
        """Add compressed vector"""
        compressed = self.compress_vector(vector)
        self.compressed_vectors.append(compressed)
        self.metadata.append(metadata or {})
        return len(self.compressed_vectors) - 1
    
    def get_vector(self, index, decompress=True):
        """Retrieve vector, optionally decompressed"""
        if 0 <= index < len(self.compressed_vectors):
            compressed = self.compressed_vectors[index]
            if decompress:
                return self.decompress_vector(compressed), self.metadata[index]
            else:
                return compressed, self.metadata[index]
        return None, None
    
    def calculate_compression_ratio(self):
        """Calculate storage savings"""
        original_size = self.dimension * 4  # float32
        if self.compression_method == 'pca':
            compressed_size = self.compressed_dimension * 4  # float32
        elif self.compression_method == 'quantization':
            compressed_size = self.dimension * 1  # uint8
        
        ratio = original_size / compressed_size
        savings = (1 - compressed_size / original_size) * 100
        
        return {
            'compression_ratio': ratio,
            'space_savings_percent': savings,
            'original_bytes': original_size,
            'compressed_bytes': compressed_size
        }

# Example usage
# Generate training data
training_data = np.random.random((1000, 128))

# PCA compression
pca_storage = CompressedVectorStorage(dimension=128, compression_method='pca')
pca_storage.train_compression(training_data, target_dimension=32)

# Add vectors
test_vectors = np.random.random((100, 128))
for i, vector in enumerate(test_vectors):
    pca_storage.add_vector(vector, {'id': i})

# Check compression effectiveness
pca_stats = pca_storage.calculate_compression_ratio()
print("PCA Compression Stats:")
for key, value in pca_stats.items():
    if 'percent' in key:
        print(f"  {key}: {value:.1f}%")
    elif 'ratio' in key:
        print(f"  {key}: {value:.2f}x")
    else:
        print(f"  {key}: {value}")

# Test reconstruction quality
original = test_vectors[0]
reconstructed, _ = pca_storage.get_vector(0, decompress=True)

reconstruction_error = np.mean((original - reconstructed) ** 2)
print(f"Reconstruction MSE: {reconstruction_error:.6f}")

5. Distributed Storage Pattern ​

Spreads vectors across multiple nodes for scalability.

python
class DistributedVectorStorage:
    def __init__(self, nodes):
        """
        Initialize distributed storage
        nodes: list of node identifiers/addresses
        """
        self.nodes = nodes
        self.node_storage = {node: {} for node in nodes}
        self.hash_ring = self._create_hash_ring()
        self.replication_factor = min(3, len(nodes))  # Replicate to up to 3 nodes
    
    def _create_hash_ring(self):
        """Create consistent hash ring for node selection"""
        import hashlib
        ring = {}
        
        # Add multiple virtual nodes per physical node for better distribution
        virtual_nodes_per_node = 100
        
        for node in self.nodes:
            for i in range(virtual_nodes_per_node):
                virtual_node = f"{node}:{i}"
                hash_value = int(hashlib.md5(virtual_node.encode()).hexdigest(), 16)
                ring[hash_value] = node
        
        # Sort by hash value
        self.sorted_hashes = sorted(ring.keys())
        return ring
    
    def _get_nodes_for_key(self, key):
        """Get nodes responsible for storing a key"""
        import hashlib
        key_hash = int(hashlib.md5(str(key).encode()).hexdigest(), 16)
        
        # Find position in hash ring
        idx = 0
        for i, hash_val in enumerate(self.sorted_hashes):
            if key_hash <= hash_val:
                idx = i
                break
        
        # Get nodes for replication
        selected_nodes = []
        unique_nodes = set()
        
        for i in range(len(self.sorted_hashes)):
            ring_idx = (idx + i) % len(self.sorted_hashes)
            hash_val = self.sorted_hashes[ring_idx]
            node = self.hash_ring[hash_val]
            
            if node not in unique_nodes:
                selected_nodes.append(node)
                unique_nodes.add(node)
                
                if len(selected_nodes) >= self.replication_factor:
                    break
        
        return selected_nodes
    
    def store_vector(self, vector_id, vector, metadata=None):
        """Store vector across multiple nodes"""
        nodes = self._get_nodes_for_key(vector_id)
        
        data = {
            'vector': vector,
            'metadata': metadata or {},
            'timestamp': time.time()
        }
        
        stored_nodes = []
        for node in nodes:
            try:
                # In a real implementation, this would be a network call
                self.node_storage[node][vector_id] = data
                stored_nodes.append(node)
            except Exception as e:
                print(f"Failed to store on node {node}: {e}")
        
        return {
            'vector_id': vector_id,
            'stored_on': stored_nodes,
            'replication_level': len(stored_nodes)
        }
    
    def retrieve_vector(self, vector_id):
        """Retrieve vector from any available replica"""
        nodes = self._get_nodes_for_key(vector_id)
        
        for node in nodes:
            try:
                if vector_id in self.node_storage[node]:
                    return self.node_storage[node][vector_id]
            except Exception as e:
                print(f"Failed to retrieve from node {node}: {e}")
                continue
        
        return None
    
    def get_cluster_stats(self):
        """Get statistics about the distributed storage"""
        stats = {
            'nodes': len(self.nodes),
            'total_vectors': 0,
            'node_distribution': {},
            'replication_factor': self.replication_factor
        }
        
        for node in self.nodes:
            count = len(self.node_storage[node])
            stats['node_distribution'][node] = count
            stats['total_vectors'] += count
        
        # Calculate distribution balance
        if self.nodes:
            avg_per_node = stats['total_vectors'] / len(self.nodes)
            max_deviation = max(abs(count - avg_per_node) 
                              for count in stats['node_distribution'].values())
            stats['load_balance_deviation'] = max_deviation / avg_per_node if avg_per_node > 0 else 0
        
        return stats

# Example usage
# Simulate a 4-node cluster
nodes = ['node-1', 'node-2', 'node-3', 'node-4']
distributed_storage = DistributedVectorStorage(nodes)

# Store vectors
for i in range(100):
    vector = np.random.random(128)
    metadata = {'id': i, 'category': f'type_{i%5}'}
    result = distributed_storage.store_vector(f'vec_{i}', vector, metadata)

# Check distribution
stats = distributed_storage.get_cluster_stats()
print("Distributed Storage Stats:")
print(f"  Total vectors: {stats['total_vectors']}")
print(f"  Replication factor: {stats['replication_factor']}")
print(f"  Load balance deviation: {stats['load_balance_deviation']:.2%}")
print("  Node distribution:")
for node, count in stats['node_distribution'].items():
    print(f"    {node}: {count} vectors")

# Test retrieval
retrieved = distributed_storage.retrieve_vector('vec_0')
if retrieved:
    print(f"Successfully retrieved vector with metadata: {retrieved['metadata']}")

Storage Performance Optimization ​

Memory Management ​

python
class MemoryEfficientVectorStorage:
    def __init__(self, dimension, batch_size=1000):
        self.dimension = dimension
        self.batch_size = batch_size
        self.batches = []
        self.current_batch = []
        self.current_metadata = []
        self.total_vectors = 0
    
    def add_vector(self, vector, metadata=None):
        """Add vector with automatic batching"""
        self.current_batch.append(vector)
        self.current_metadata.append(metadata or {})
        
        if len(self.current_batch) >= self.batch_size:
            self._flush_batch()
        
        self.total_vectors += 1
        return self.total_vectors - 1
    
    def _flush_batch(self):
        """Convert current batch to numpy array and store"""
        if self.current_batch:
            batch_array = np.array(self.current_batch, dtype=np.float32)
            self.batches.append({
                'vectors': batch_array,
                'metadata': self.current_metadata.copy()
            })
            
            # Clear current batch
            self.current_batch = []
            self.current_metadata = []
    
    def get_vector(self, index):
        """Retrieve vector by global index"""
        if index >= self.total_vectors:
            return None, None
        
        # Find which batch contains this index
        batch_idx = index // self.batch_size
        local_idx = index % self.batch_size
        
        # Handle current unflushed batch
        if batch_idx >= len(self.batches):
            if local_idx < len(self.current_batch):
                return self.current_batch[local_idx], self.current_metadata[local_idx]
            return None, None
        
        # Get from flushed batch
        batch = self.batches[batch_idx]
        if local_idx < len(batch['vectors']):
            return batch['vectors'][local_idx], batch['metadata'][local_idx]
        
        return None, None
    
    def finalize(self):
        """Flush any remaining vectors and optimize storage"""
        self._flush_batch()
        
        # Optional: consolidate small batches
        self._consolidate_small_batches()
    
    def _consolidate_small_batches(self, min_size=None):
        """Merge small batches to improve memory efficiency"""
        if min_size is None:
            min_size = self.batch_size // 2
        
        new_batches = []
        accumulated_vectors = []
        accumulated_metadata = []
        
        for batch in self.batches:
            vectors = batch['vectors']
            metadata = batch['metadata']
            
            if len(vectors) < min_size and accumulated_vectors:
                # Add to accumulator
                accumulated_vectors.extend(vectors)
                accumulated_metadata.extend(metadata)
                
                # Check if accumulator is big enough
                if len(accumulated_vectors) >= self.batch_size:
                    # Flush accumulator
                    new_batches.append({
                        'vectors': np.array(accumulated_vectors, dtype=np.float32),
                        'metadata': accumulated_metadata
                    })
                    accumulated_vectors = []
                    accumulated_metadata = []
            else:
                # Flush accumulator if exists
                if accumulated_vectors:
                    new_batches.append({
                        'vectors': np.array(accumulated_vectors, dtype=np.float32),
                        'metadata': accumulated_metadata
                    })
                    accumulated_vectors = []
                    accumulated_metadata = []
                
                # Add current batch
                new_batches.append(batch)
        
        # Handle any remaining accumulated items
        if accumulated_vectors:
            new_batches.append({
                'vectors': np.array(accumulated_vectors, dtype=np.float32),
                'metadata': accumulated_metadata
            })
        
        self.batches = new_batches
    
    def get_memory_usage(self):
        """Calculate memory usage statistics"""
        total_vectors = sum(len(batch['vectors']) for batch in self.batches)
        total_vectors += len(self.current_batch)
        
        vector_memory = total_vectors * self.dimension * 4  # float32
        metadata_memory = len(str(self.current_metadata)) * len(self.batches)  # Rough estimate
        
        return {
            'total_vectors': total_vectors,
            'vector_memory_mb': vector_memory / (1024 * 1024),
            'metadata_memory_mb': metadata_memory / (1024 * 1024),
            'num_batches': len(self.batches),
            'avg_batch_size': total_vectors / len(self.batches) if self.batches else 0
        }

# Example usage
efficient_storage = MemoryEfficientVectorStorage(dimension=128, batch_size=500)

# Add many vectors
for i in range(2500):
    vector = np.random.random(128)
    metadata = {'id': i, 'batch': i // 500}
    efficient_storage.add_vector(vector, metadata)

# Finalize storage
efficient_storage.finalize()

# Check memory usage
memory_stats = efficient_storage.get_memory_usage()
print("Memory-Efficient Storage Stats:")
for key, value in memory_stats.items():
    if 'mb' in key:
        print(f"  {key}: {value:.2f} MB")
    else:
        print(f"  {key}: {value}")

🎯 Key Takeaways ​

Storage Pattern Selection ​

  • Flat Storage: Best for small datasets and simple use cases
  • Partitioned Storage: Good for medium-scale applications with known access patterns
  • Hierarchical Storage: Ideal for applications with mixed hot/cold data access
  • Compressed Storage: Essential for large-scale deployments with storage constraints
  • Distributed Storage: Required for massive scale and high availability

Performance Considerations ​

  • Memory vs Disk: Balance between access speed and storage cost
  • Compression Trade-offs: Storage savings vs computational overhead
  • Replication: Availability vs storage cost
  • Indexing: Query speed vs storage overhead

Scalability Strategies ​

  • Horizontal Partitioning: Split data across multiple storage units
  • Vertical Partitioning: Separate frequently and rarely accessed data
  • Caching Layers: Use memory tiers for frequently accessed vectors
  • Batch Processing: Optimize for bulk operations when possible

Next Steps:

Released under the MIT License.