Error Handling - LangChain in Production β
Learn robust error handling strategies for LangChain applications, including retries, circuit breakers, and graceful degradation
π¨ Error Handling Overview β
Error handling ensures reliability and resilience in LangChain systems. This guide covers error patterns, retry logic, circuit breakers, and best practices for production.
ποΈ Error Patterns β
- Catch and log exceptions at all layers
- Use custom error classes for clarity
- Provide meaningful error messages to users
π Retry Logic & Circuit Breakers β
- Implement retries with exponential backoff
- Use circuit breakers to prevent cascading failures
- Gracefully degrade features on persistent errors
python
import time
import logging
logger = logging.getLogger("langchain")
# Retry with exponential backoff
def retry_call(func, max_attempts=3):
for attempt in range(max_attempts):
try:
return func()
except Exception as e:
logger.error(f"Attempt {attempt+1} failed: {e}")
time.sleep(2 ** attempt)
raise Exception("All attempts failed")π§© Example: FastAPI Error Handler β
python
from fastapi import FastAPI, Request
from fastapi.responses import JSONResponse
app = FastAPI()
@app.exception_handler(Exception)
def generic_exception_handler(request: Request, exc: Exception):
return JSONResponse(status_code=500, content={"error": str(exc)})π Next Steps β
Key Error Handling Takeaways:
- Catch and log all exceptions
- Use retries and circuit breakers
- Gracefully degrade on persistent errors
- Provide clear error messages
- Continuously improve error handling