Skip to content

Error Handling - LangChain in Production ​

Learn robust error handling strategies for LangChain applications, including retries, circuit breakers, and graceful degradation

🚨 Error Handling Overview ​

Error handling ensures reliability and resilience in LangChain systems. This guide covers error patterns, retry logic, circuit breakers, and best practices for production.


πŸ›οΈ Error Patterns ​

  • Catch and log exceptions at all layers
  • Use custom error classes for clarity
  • Provide meaningful error messages to users

πŸ”„ Retry Logic & Circuit Breakers ​

  • Implement retries with exponential backoff
  • Use circuit breakers to prevent cascading failures
  • Gracefully degrade features on persistent errors
python
import time
import logging

logger = logging.getLogger("langchain")

# Retry with exponential backoff
def retry_call(func, max_attempts=3):
    for attempt in range(max_attempts):
        try:
            return func()
        except Exception as e:
            logger.error(f"Attempt {attempt+1} failed: {e}")
            time.sleep(2 ** attempt)
    raise Exception("All attempts failed")

🧩 Example: FastAPI Error Handler ​

python
from fastapi import FastAPI, Request
from fastapi.responses import JSONResponse

app = FastAPI()

@app.exception_handler(Exception)
def generic_exception_handler(request: Request, exc: Exception):
    return JSONResponse(status_code=500, content={"error": str(exc)})

πŸ”— Next Steps ​


Key Error Handling Takeaways:

  • Catch and log all exceptions
  • Use retries and circuit breakers
  • Gracefully degrade on persistent errors
  • Provide clear error messages
  • Continuously improve error handling

Released under the MIT License.