Skip to content

Model Providers - OpenAI, Anthropic, Hugging Face & Local Models ​

Complete guide to integrating different AI model providers with LangChain - compare features, setup, and choose the best provider for your needs

🌍 LangChain Provider Ecosystem ​

LangChain supports dozens of model providers, giving you flexibility to choose the best models for your specific needs, budget, and requirements.

🎯 Provider Categories ​

text
                    🌍 LANGCHAIN PROVIDER ECOSYSTEM 🌍
                        (Complete provider landscape)

    β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
    β”‚                  ☁️ CLOUD PROVIDERS                             β”‚
    β”‚                 (API-based, scalable)                          β”‚
    β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
                         β”‚
            β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
            β”‚            β”‚            β”‚
    β”Œβ”€β”€β”€β”€β”€β”€β”€β–Όβ”€β”€β”€β”€β”€β”€β” β”Œβ”€β”€β”€β–Όβ”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β–Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”
    β”‚   OPENAI     β”‚ β”‚ANTHROPICβ”‚ β”‚   GOOGLE     β”‚
    β”‚              β”‚ β”‚ CLAUDE  β”‚ β”‚   GEMINI     β”‚
    β”‚ β€’ GPT-4/3.5  β”‚ β”‚ β€’ Safetyβ”‚ β”‚ β€’ Multimodal β”‚
    β”‚ β€’ Most popularβ”‚ β”‚ β€’ Long  β”‚ β”‚ β€’ Free tier  β”‚
    β”‚ β€’ Great docs β”‚ β”‚ context β”‚ β”‚ β€’ Integrationβ”‚
    β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
            β”‚            β”‚            β”‚
            β–Ό            β–Ό            β–Ό
    β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
    β”‚                 🏠 LOCAL PROVIDERS                              β”‚
    β”‚                (Privacy, control, cost)                        β”‚
    β”‚                                                               β”‚
    β”‚ πŸ¦™ Ollama       πŸ“± Hugging Face    🐍 Transformers            β”‚
    β”‚ β€’ Easy setup    β€’ Model hub         β€’ Direct integration       β”‚
    β”‚ β€’ No API costs  β€’ Open source      β€’ Full control             β”‚
    β”‚ β€’ Privacy       β€’ Community        β€’ Custom training          β”‚
    β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

πŸ€– OpenAI - The Standard Bearer ​

OpenAI provides the most popular and well-documented models, making it the go-to choice for most applications.

πŸš€ Setup and Configuration ​

bash
# Installation
pip install langchain-openai
python
import os
from langchain_openai import ChatOpenAI, OpenAI, OpenAIEmbeddings

# Set API key (recommended: use environment variables)
os.environ["OPENAI_API_KEY"] = "your-api-key-here"

# Chat model (recommended for most use cases)
chat_model = ChatOpenAI(
    model="gpt-4",
    temperature=0.7,
    max_tokens=1000,
    api_key=os.getenv("OPENAI_API_KEY")
)

# Completion model (for simple text generation)
completion_model = OpenAI(
    model="gpt-3.5-turbo-instruct",
    temperature=0.7
)

# Embeddings model
embeddings = OpenAIEmbeddings(
    model="text-embedding-ada-002"
)

πŸ“Š OpenAI Model Options ​

ModelBest ForContext LengthCost (per 1K tokens)
GPT-4Complex reasoning, accuracy8K-128K$0.01-0.06
GPT-3.5-turboGeneral tasks, speed16K$0.001-0.002
GPT-4-turboLong context, multimodal128K$0.01-0.03
text-embedding-ada-002Embeddings8K$0.0001

🎯 OpenAI Advanced Features ​

python
# Function calling (tool use)
from langchain_core.tools import tool

@tool
def calculator(expression: str) -> str:
    """Calculate mathematical expressions safely"""
    try:
        return str(eval(expression))
    except:
        return "Invalid expression"

# Bind tools to model
chat_with_tools = ChatOpenAI(model="gpt-4").bind_tools([calculator])

# Vision capabilities (GPT-4V)
from langchain_core.messages import HumanMessage

vision_model = ChatOpenAI(model="gpt-4-vision-preview")
response = vision_model.invoke([
    HumanMessage(content=[
        {"type": "text", "text": "What's in this image?"},
        {"type": "image_url", "image_url": {"url": "https://example.com/image.jpg"}}
    ])
])

πŸ’° Cost Optimization for OpenAI ​

python
# Cost-aware model selection
class CostOptimizedOpenAI:
    def __init__(self):
        self.models = {
            'cheap': ChatOpenAI(model="gpt-3.5-turbo", max_tokens=500),
            'balanced': ChatOpenAI(model="gpt-4", max_tokens=300),
            'premium': ChatOpenAI(model="gpt-4", max_tokens=2000)
        }
    
    def get_model(self, complexity: str, budget: str):
        if budget == 'low':
            return self.models['cheap']
        elif complexity == 'high':
            return self.models['premium']
        else:
            return self.models['balanced']

optimizer = CostOptimizedOpenAI()
model = optimizer.get_model(complexity='medium', budget='medium')

🧠 Anthropic Claude - Safety and Long Context ​

Anthropic's Claude models excel in safety, nuanced reasoning, and handling very long contexts.

πŸ”§ Setup and Configuration ​

bash
# Installation
pip install langchain-anthropic
python
import os
from langchain_anthropic import ChatAnthropic

# Set API key
os.environ["ANTHROPIC_API_KEY"] = "your-api-key-here"

# Claude model
claude = ChatAnthropic(
    model="claude-3-sonnet-20240229",
    temperature=0.7,
    max_tokens=1000,
    api_key=os.getenv("ANTHROPIC_API_KEY")
)

# Use Claude
from langchain_core.messages import HumanMessage
response = claude.invoke([
    HumanMessage(content="Explain the ethical implications of AI development")
])
print(response.content)

πŸ“Š Claude Model Comparison ​

ModelContext LengthBest ForRelative Cost
Claude-3 Haiku200KSpeed, simple tasksLow
Claude-3 Sonnet200KBalanced performanceMedium
Claude-3 Opus200KComplex reasoningHigh

πŸ›‘οΈ Claude Safety Features ​

python
# Claude excels at handling sensitive topics safely
safety_prompt = """
Please provide information about AI safety concerns 
while being balanced and educational.
"""

safety_response = claude.invoke([HumanMessage(content=safety_prompt)])
print(safety_response.content)

# Long context handling (up to 200K tokens)
long_document = "..." * 10000  # Very long text
long_context_response = claude.invoke([
    HumanMessage(content=f"Summarize this document: {long_document}")
])

🌟 Google Gemini - Multimodal and Free Tier ​

Google's Gemini models offer strong performance with generous free tiers and multimodal capabilities.

βš™οΈ Setup and Configuration ​

bash
# Installation
pip install langchain-google-genai
python
import os
from langchain_google_genai import ChatGoogleGenerativeAI

# Set API key
os.environ["GOOGLE_API_KEY"] = "your-api-key-here"

# Gemini model
gemini = ChatGoogleGenerativeAI(
    model="gemini-pro",
    temperature=0.7,
    convert_system_message_to_human=True  # Gemini-specific setting
)

# Use Gemini
response = gemini.invoke([
    HumanMessage(content="Explain quantum computing in simple terms")
])
print(response.content)

🎨 Gemini Multimodal Capabilities ​

python
# Gemini Vision for image analysis
gemini_vision = ChatGoogleGenerativeAI(model="gemini-pro-vision")

# Analyze images (when available)
# response = gemini_vision.invoke([
#     HumanMessage(content=[
#         {"type": "text", "text": "Describe this image"},
#         {"type": "image_url", "image_url": {"url": "image_url_here"}}
#     ])
# ])

πŸ’Ž Gemini Free Tier Benefits ​

python
# Free tier monitoring
class GeminiUsageTracker:
    def __init__(self):
        self.requests_today = 0
        self.daily_limit = 60  # Free tier limit
    
    def can_make_request(self):
        return self.requests_today < self.daily_limit
    
    def make_request(self, prompt):
        if not self.can_make_request():
            return "Daily limit reached. Please try tomorrow."
        
        self.requests_today += 1
        return gemini.invoke([HumanMessage(content=prompt)])

tracker = GeminiUsageTracker()

🏠 Local Models - Privacy and Control ​

Run models locally for complete privacy, customization, and cost control.

πŸ¦™ Ollama - Easy Local Setup ​

bash
# Install Ollama
# macOS/Linux: curl -fsSL https://ollama.ai/install.sh | sh
# Windows: Download from ollama.ai

# Pull models
ollama pull llama2
ollama pull codellama
ollama pull mistral
python
from langchain_community.llms import Ollama

# Initialize local model
local_llm = Ollama(
    model="llama2",
    temperature=0.7,
    num_predict=256,  # Max tokens to generate
    top_k=40,         # Top-k sampling
    top_p=0.9         # Nucleus sampling
)

# Use local model
response = local_llm.invoke("Explain the benefits of local AI models")
print(response)

# List available models
# ollama list

πŸ€— Hugging Face Models ​

bash
# Installation
pip install langchain-huggingface transformers torch
python
from langchain_huggingface import HuggingFacePipeline
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline

# Local Hugging Face model
model_name = "microsoft/DialoGPT-medium"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)

# Create pipeline
pipe = pipeline(
    "text-generation",
    model=model,
    tokenizer=tokenizer,
    max_length=200,
    temperature=0.7,
    do_sample=True,
    device=-1  # Use CPU, set to 0 for GPU
)

# LangChain wrapper
hf_llm = HuggingFacePipeline(pipeline=pipe)

# Use model
response = hf_llm.invoke("The future of AI is")
print(response)

πŸ”§ Custom Local Model Integration ​

python
from langchain_core.language_models.llms import LLM
from typing import Optional, List, Any

class CustomLocalLLM(LLM):
    model_path: str
    
    def __init__(self, model_path: str):
        super().__init__()
        self.model_path = model_path
        # Initialize your model here
        # self.model = load_model(model_path)
    
    @property
    def _llm_type(self) -> str:
        return "custom_local"
    
    def _call(
        self,
        prompt: str,
        stop: Optional[List[str]] = None,
        run_manager: Optional[Any] = None,
        **kwargs: Any,
    ) -> str:
        # Your custom inference logic
        # return self.model.generate(prompt)
        return f"Custom local model response to: {prompt[:50]}..."

# Usage
custom_model = CustomLocalLLM(model_path="/path/to/your/model")

πŸ” Embedding Providers Comparison ​

πŸ“Š Embedding Provider Options ​

python
# OpenAI Embeddings (most popular)
from langchain_openai import OpenAIEmbeddings
openai_embeddings = OpenAIEmbeddings(model="text-embedding-ada-002")

# Hugging Face Embeddings (free, local)
from langchain_community.embeddings import HuggingFaceEmbeddings
hf_embeddings = HuggingFaceEmbeddings(
    model_name="sentence-transformers/all-MiniLM-L6-v2"
)

# Cohere Embeddings (good for search)
from langchain_community.embeddings import CohereEmbeddings
cohere_embeddings = CohereEmbeddings(
    model="embed-english-v2.0",
    cohere_api_key="your-cohere-key"
)

# Local Sentence Transformers
from langchain_community.embeddings import SentenceTransformerEmbeddings
st_embeddings = SentenceTransformerEmbeddings(
    model_name="all-MiniLM-L6-v2"
)

πŸ“ˆ Embedding Performance Comparison ​

ProviderDimensionLanguagesSpeedQualityCost
OpenAI ada-0021536100+FastHighLow
Sentence-BERT384-76850+FastGoodFree
Cohere4096100+FastHighMedium
Local STVariableVariableMediumGoodFree

πŸ”„ Provider Switching and Fallbacks ​

πŸ”€ Multi-Provider Strategy ​

python
class MultiProviderLLM:
    def __init__(self):
        self.providers = {
            'primary': ChatOpenAI(model="gpt-4"),
            'secondary': ChatAnthropic(model="claude-3-sonnet-20240229"),
            'fallback': Ollama(model="llama2")
        }
        self.current_provider = 'primary'
    
    def invoke(self, messages, max_retries=3):
        providers_to_try = ['primary', 'secondary', 'fallback']
        
        for provider_name in providers_to_try:
            try:
                provider = self.providers[provider_name]
                return provider.invoke(messages)
            except Exception as e:
                print(f"{provider_name} failed: {e}")
                continue
        
        raise Exception("All providers failed")

# Usage
multi_llm = MultiProviderLLM()
response = multi_llm.invoke([HumanMessage(content="Hello")])

⚑ Load Balancing ​

python
import random
from typing import List

class LoadBalancedLLM:
    def __init__(self, providers: List[Any]):
        self.providers = providers
        self.usage_count = {i: 0 for i in range(len(providers))}
    
    def invoke(self, messages):
        # Simple round-robin load balancing
        provider_idx = min(self.usage_count, key=self.usage_count.get)
        provider = self.providers[provider_idx]
        
        try:
            response = provider.invoke(messages)
            self.usage_count[provider_idx] += 1
            return response
        except Exception as e:
            # Remove failed provider temporarily
            return self._fallback_invoke(messages, exclude=[provider_idx])
    
    def _fallback_invoke(self, messages, exclude):
        available_providers = [
            (i, p) for i, p in enumerate(self.providers) 
            if i not in exclude
        ]
        
        for idx, provider in available_providers:
            try:
                return provider.invoke(messages)
            except:
                continue
        
        raise Exception("All providers failed")

# Setup load balancer
providers = [
    ChatOpenAI(model="gpt-3.5-turbo"),
    ChatAnthropic(model="claude-3-haiku-20240307"),
    Ollama(model="llama2")
]
load_balancer = LoadBalancedLLM(providers)

πŸ’° Cost Comparison and Optimization ​

πŸ“Š Cost Analysis Tool ​

python
class CostAnalyzer:
    def __init__(self):
        self.pricing = {
            'gpt-4': {'input': 0.03, 'output': 0.06},
            'gpt-3.5-turbo': {'input': 0.001, 'output': 0.002},
            'claude-3-sonnet': {'input': 0.003, 'output': 0.015},
            'gemini-pro': {'input': 0.00025, 'output': 0.0005},
            'local': {'input': 0.0, 'output': 0.0}
        }
    
    def estimate_cost(self, model: str, input_tokens: int, output_tokens: int):
        if model not in self.pricing:
            return 0.0
        
        input_cost = (input_tokens / 1000) * self.pricing[model]['input']
        output_cost = (output_tokens / 1000) * self.pricing[model]['output']
        
        return input_cost + output_cost
    
    def compare_costs(self, input_tokens: int, output_tokens: int):
        costs = {}
        for model in self.pricing:
            costs[model] = self.estimate_cost(model, input_tokens, output_tokens)
        
        return sorted(costs.items(), key=lambda x: x[1])

# Usage
analyzer = CostAnalyzer()
cost_comparison = analyzer.compare_costs(1000, 500)
print("Cost comparison (cheapest first):")
for model, cost in cost_comparison:
    print(f"{model}: ${cost:.4f}")

πŸ›‘οΈ Security and Privacy Considerations ​

πŸ” Provider Security Comparison ​

ProviderData RetentionPrivacy PolicyComplianceAudit Logs
OpenAI30 days (API)PublicSOC 2Available
AnthropicNot used for trainingStrongSOC 2Available
GoogleVaries by planPublicISO 27001Available
LocalFull controlYour choiceYour setupYour logs

πŸ›‘οΈ Secure Provider Configuration ​

python
class SecureProviderManager:
    def __init__(self):
        self.secure_configs = {
            'openai': {
                'timeout': 30,
                'max_retries': 3,
                'request_timeout': 60
            },
            'anthropic': {
                'timeout': 30,
                'max_retries': 3
            }
        }
    
    def get_secure_model(self, provider: str, sensitive_data: bool = False):
        if sensitive_data:
            # Force local model for sensitive data
            return Ollama(model="llama2")
        
        if provider == 'openai':
            return ChatOpenAI(
                model="gpt-3.5-turbo",
                timeout=self.secure_configs['openai']['timeout'],
                max_retries=self.secure_configs['openai']['max_retries']
            )
        
        # Add other providers...
        return None

secure_manager = SecureProviderManager()

🎯 Provider Selection Guide ​

πŸ“‹ Decision Matrix ​

Use this guide to choose the right provider:

python
def recommend_provider(requirements: dict) -> str:
    """
    Recommend provider based on requirements
    
    Args:
        requirements: {
            'budget': 'low'|'medium'|'high',
            'privacy': 'low'|'medium'|'high',
            'complexity': 'low'|'medium'|'high',
            'speed': 'low'|'medium'|'high',
            'accuracy': 'low'|'medium'|'high'
        }
    """
    if requirements.get('privacy') == 'high':
        return 'local (Ollama/HuggingFace)'
    
    if requirements.get('budget') == 'low':
        if requirements.get('accuracy') == 'high':
            return 'Google Gemini'
        else:
            return 'local (Ollama)'
    
    if requirements.get('complexity') == 'high':
        return 'OpenAI GPT-4'
    
    if requirements.get('speed') == 'high':
        return 'OpenAI GPT-3.5-turbo'
    
    # Balanced option
    return 'Anthropic Claude'

# Example usage
requirements = {
    'budget': 'medium',
    'privacy': 'medium', 
    'complexity': 'high',
    'speed': 'medium',
    'accuracy': 'high'
}

recommended = recommend_provider(requirements)
print(f"Recommended provider: {recommended}")

πŸ”— Next Steps ​

Ready to configure your chosen models? Continue with:


Provider Selection Summary:

  • OpenAI: Best overall, great docs, most features
  • Anthropic: Safety-focused, long context, nuanced reasoning
  • Google: Free tier, multimodal, good performance
  • Local: Privacy, control, no API costs, customizable
  • Mix & Match: Use different providers for different tasks

Released under the MIT License.