Skip to content

Data Privacy - LangChain in Production ​

Learn how to protect sensitive data, implement privacy controls, and comply with data protection regulations in LangChain applications

πŸ”’ Data Privacy Overview ​

Protecting user and business data is essential for trust and compliance. This guide covers privacy controls, PII detection, anonymization, and privacy-by-design patterns for LangChain systems.


πŸ›‘οΈ Privacy Controls ​

  • Mask or redact sensitive data in logs and outputs
  • Use access controls for private data
  • Enforce data minimization (collect only what is needed)

πŸ§‘β€πŸ’» PII Detection & Anonymization ​

  • Use NLP models to detect PII (names, emails, addresses)
  • Anonymize or pseudonymize data before storage or processing
  • Audit data flows for privacy risks
python
import re

def mask_email(text):
    return re.sub(r"[\w\.-]+@[\w\.-]+", "[EMAIL REDACTED]", text)

sample = "Contact: alice@example.com"
print(mask_email(sample))

πŸ›οΈ Privacy-by-Design Patterns ​

  • Build privacy into system architecture from the start
  • Use privacy impact assessments (PIA)
  • Document privacy controls and decisions

🧩 Example: FastAPI Data Redaction Middleware ​

python
from fastapi import FastAPI, Request
import re

app = FastAPI()

@app.middleware("http")
async def redact_middleware(request: Request, call_next):
    response = await call_next(request)
    if hasattr(response, "body"):
        response.body = re.sub(b"[\w\.-]+@[\w\.-]+", b"[EMAIL REDACTED]", response.body)
    return response

πŸ”— Next Steps ​


Key Data Privacy Takeaways:

  • Mask and minimize sensitive data
  • Detect and anonymize PII
  • Build privacy into system design
  • Audit and document privacy controls
  • Continuously improve privacy posture

Released under the MIT License.