Internationalization - LangChain in Production β
Learn how to build LangChain applications that support multiple languages and regions
π Internationalization Overview β
Internationalization (i18n) enables LangChain systems to serve global audiences. This guide covers language support, localization, and best practices for i18n.
ποΈ Language Support β
- Use Unicode and UTF-8 encoding throughout
- Support multiple input/output languages in chains
- Integrate translation APIs (Google Translate, Azure Translator)
π§βπ» Localization Patterns β
- Localize prompts, responses, and UI elements
- Handle date, time, and number formats per locale
- Provide region-specific content and compliance
π§ͺ Testing Internationalization β
- Test with multilingual datasets and users
- Automate i18n tests in CI/CD pipelines
- Collect feedback from global users
π§© Example: Multilingual Chain β
python
from langchain_openai import ChatOpenAI
llm = ChatOpenAI(model="gpt-3.5-turbo")
prompt = "ΒΏCuΓ‘l es la capital de Francia?"
response = llm.invoke(prompt)
print(response) # Should return "ParΓs"π Next Steps β
Key Internationalization Takeaways:
- Support Unicode and multiple languages
- Localize content and formats
- Test with global users
- Continuously improve i18n coverage
- Make global readiness a priority