Skip to content

Internationalization - LangChain in Production ​

Learn how to build LangChain applications that support multiple languages and regions

🌍 Internationalization Overview ​

Internationalization (i18n) enables LangChain systems to serve global audiences. This guide covers language support, localization, and best practices for i18n.


πŸ›οΈ Language Support ​

  • Use Unicode and UTF-8 encoding throughout
  • Support multiple input/output languages in chains
  • Integrate translation APIs (Google Translate, Azure Translator)

πŸ§‘β€πŸ’» Localization Patterns ​

  • Localize prompts, responses, and UI elements
  • Handle date, time, and number formats per locale
  • Provide region-specific content and compliance

πŸ§ͺ Testing Internationalization ​

  • Test with multilingual datasets and users
  • Automate i18n tests in CI/CD pipelines
  • Collect feedback from global users

🧩 Example: Multilingual Chain ​

python
from langchain_openai import ChatOpenAI

llm = ChatOpenAI(model="gpt-3.5-turbo")
prompt = "ΒΏCuΓ‘l es la capital de Francia?"
response = llm.invoke(prompt)
print(response)  # Should return "ParΓ­s"

πŸ”— Next Steps ​


Key Internationalization Takeaways:

  • Support Unicode and multiple languages
  • Localize content and formats
  • Test with global users
  • Continuously improve i18n coverage
  • Make global readiness a priority

Released under the MIT License.